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ABSTRACT

We have implemented a system to recognize and classify
music.  Given an audio sample; our system is able to
determine the genre, artist, album, and title of the given
song.  This is done by creating a database of models
based on songs it’s trained on.  Input songs’ features and
models are compared with existing models to determine
the identity of the song, along with its genre, artist, and
album.

This system is robust enough to handle thousands of
songs, and allows for classification of any number of
input samples.  Since the system is classifying songs on
an acoustic level, it is immune to small amounts of noise,
added silence, and encoding rate of the input sample.

1. INTRODUCTION

While a great deal of work has gone into improving and
expanding computer speech recognition systems,
recognition and classification of non-speech sound
domains has received little attention.  The techniques
developed and used in speech audio domains are not
very specific to any particular type of sound.  With this
in mind, it should be possible to extend and use the same
techniques in the recognition and classification of music.
We have shown that it is possible to implement a system
using the speech audio techniques to classify a music file
by genre, artist, and album and to compute the identity of
the music file without resorting to linear search.

2. BACKGROUND LITERATURE

Using Hidden Markov Models to represent generators of
sequences of data has long been shown to be an
acceptable solution for recognizing the origin of an
observation.  HMM’s have been used in many areas of
speech recognition, as the problem is inherently this: that
our system is observing some sequence of data and we
need to classify the state from which it most
probabilistically came.  For continuous data (where there
are no specific symbols being generated by a state), it is
possible to use a Gaussian distribution to represent the
probability of observing some output.  It has been seen
that if we can guarantee that there are never any state
transitions, the Gaussian distribution used with a single
model can be used to tell the probability of that state

observing the given sequence.  Gaussian Mixture Models
are an extension of this idea.

Training of Gaussian Mixture Models to classify various
data has been done for many research projects.  In recent
times, systems using GMM's have been trained to
recognize and classify audio.  These systems have been
shown to be quite successful in the areas of speaker
detection [6] and the tracking of speech through audio
documents containing speech, noise, music, and
combinations thereof [7].

Gaussian Mixture Models have also been used to classify
instruments based on small music samples.  Marques and
Moreno [1] were able to construct such a system using
Gaussian Mixture Models.  Their conclusions indicate
that use of GMM’s for classification of non-speech audio
can be done.  There were limitations in this approach of
only using small audio samples.  This research implies
that classification of entire songs using mixture models
may be feasible.

A company called Relatable [2] developed an open-
source song finger-printer called TRM that is similar to
what we here propose for song identification.  TRM
interacts with a closed-source database that stores song
metadata.  TRM analyzes the first 30 seconds of a song
for 34 features.  Relatable’s website does not give a
description of their method beyond that, but it seems
likely that they use Gaussian Mixture Models.  Relatable
reports over 99% accuracy on mp3s encoded at 96 kb/s,
so we feel our performance goals below are justified.
TRM and Relatable’s database were used by Napster to
block trading of protected songs.

The straightforward approach to speaker identification
and classification with Gaussian Mixture Models is
linear search.  Given an audio sample, a system extracts
a collection of features such as Mel-Frequency Cepstral
Coefficients.  It then, for each GMM in the system,
computes the log likelihood that the features were
generated by that GMM.  The GMM which has the
highest likelihood for having produced the presented
features is considered the class of the audio.  The number
of calculations required to calculate the likelihood for a
model makes such a linear search algorithm infeasable
for a practical application with a large number of GMMs.
For a system like ours, therefore, it is necessary to
organize the GMMs in a way to reduce the number of
GMMs tested for a match while still retaining reasonable



classification accuracy.  Further, since the time to
compute a GMM increases with the amount of training
audio, a database system cannont recompute a model for
a broad class, such as genre or artist, with each
presentation of new songs.  Our system must therefore be
able to make broad classifications without a GMM for
that specific class.

Classification of songs into more general genres (or more
specifically, regions of acoustic similarity) by training an
unsupervised neural network has been experimented
with.  Research done by Fruhirth and Rauber [4] uses a
self-organizing map to provide a clustering procedure
that is shown to successfully cluster songs with similar
acoustic properties.
Similar approaches using neural networks and vector-
machines have been used to create systems capable of
recognizing the artist of a song.  The work done by
Whitman, Flake, and Lawrence [5] supports the idea that
clustering of songs based on classification of the audio
can be done on areas other than by song or by genre.
Applying these ideas into our system should help in
clustering models.

Work has also been done in data clustering directly on
Gaussian Mixture Models.  Using vector quantization,
data can be partitioned into clusters based on some given
cost function.  Research by Buhmann [8] suggests a
method for clustering data in this fashion with
optimizations to avoid running into an NP-hard
combinatorial optimization problem.  These techniques
should provide a good base for our classifications.

3. OBJECTIVES

3.1. Song Identification

Our system should be able to correctly identify 95% of
songs it has trained on using a brute force classification
approach.  Methods that limit the set we test against
should reduce both the speed heavily and reduce the
accuracy minimally.  The system should be able to
recognize songs that have been tampered with by adding
chunks of dead audio, altering bit-rate, or those whose
original quality is less than the example presented for
training.

3.2. Song Classification

Our system should correctly classify a song according to
genre, artist, and album at 95%.  This, however, is
assuming that the system has been trained sufficiently to
have built a reasonable model of that class.  We will test
the system’s classification abilities by presenting it with
known and unknown songs by various artists and in
various genres.

3.3. Database Maintenance

In a production system, users should be able to flag a
database entry as possibly incorrect.  The system will
learn about new songs submitted to it and will update its
genre and artist knowledge accordingly.  The system’s

classification performance should not significantly
worsen as new genre and artist examples are learned.

3.4. Additional Features

A production system should also have a song-
recommendation feature.  Given a song or set of songs a
user likes (possibly accompanied by a set of songs the
user doesn’t like), the system will recommend another
set of songs, based on acoustic similarity, that the user
may like.  Given sets of songs the user likes or dislikes,
the system will be able to guess whether a user will like
or dislike a given song.  We did not have time to
implement an interface for such a feature, but our system
does calculate a set of “nearby” songs, so it should be
straightforward to add this feature.

4. SYSTEM DESIGN

The main system running our system is a Pentium 2 400
MHz running with 128 MB of ram and 94 GB of storage
space.  All of the code written for this project is written
in C, C++, or Perl.  The choice of language was very
dependant on the task that needed to be solved.  Any
calculation that is computationally expensive is written
in C.  Several operations that involve keeping track of
results, sorting, and operating on them have been written
in C++.  Classification based purely on GMMs was
implemented in Perl for speed of development and ease
of list maintainance.  Finally, functionality dealing with
large numbers of files and directory expansion was
implemented in Perl.

We use a few pieces of freely available software to aid
our task.  We use mpg123 [11] to convert audio data
from MP3 format to raw audio data.  Songs will be
analyzed based on data from a feature extractor provided
by Bryan Pellom.  This feature extractor extracts 19 Mel-
Frequency Cepstral Coefficients and 1 normalized power
vector for each 10 ms of audio.

For our system, we decided to build a Gaussian Mixture
Models for each song in our training set.  Training into a
GMM involves converting the MP3 file into raw audio,
converting this raw audio into a series of feature vectors,
and then training a model on the input vectors.  Testing
for identity involves taking in an audio sample’s features
and testing them against a subset of trained models.  We
also experimented with classification based on GMM
similarity, without computing likelihoods.

4.1. How to Represent Audio

Audio can be represented in any format from which you
can convert to WAV format.  While this can be any
format, for the duration of this paper we focus on using
MP3 files.  Once a file is in WAV format, we have
constructed a set of utilities to convert to raw audio,
down sample to 16 kHz, and convert to mono.  The
reason for these conversions is to comply with the
feature extraction code available to us.  We have
converted to mono for two reasons.  First, computing
features and models for mono audio files takes half the



time of stereo files.  Second, we have experimentally
determined that mono files provide better overall models.

4.2. MP3 to Feature Conversion

To convert from MP3 to features, a number of steps had
to be taken.  Most of these steps are done with the third
party software and can be run within a script.  The first
step is to use the mpg123 to generate a WAV file.
Fortunately, mpg123 provides an interface to down-
sample a file to both mono and 16 kHz as it’s converting
to WAV.  Once a WAV file has been generated it has to
be converted to raw audio.  Calling a simple program we
have written that simply strips off the header information
does this.  With a valid raw audio file, it is simply a
matter of calling the available feature generation code on
the file.

4.3. Feature to Model Calculation

The calculation of models based on incoming feature
vectors is done using a GMM class that wraps around the
C code we wrote before designing the project.  The
GMMs we trained had 16 mixtures of 20 means and 20
variances each.  The training program simply initializes a
new GMM, trains it on the incoming feature vector, and
outputs that GMM to a specified model file.  This GMM
file can then be read and manipulated as our approach
dictates.

4.4. How to Classify Input Audio

Classification of the input audio involves two basic
steps.  First, the input audio needs to be converted into
the appropriate test input.  Depending on the
classification method, this can be either the MFCC
features or a GMM constructed from them.  Once this
input file is calculated, it is passed to the appropriate
classification method.

5. CLASSIFICATION METHODS

5.1. Brute Force

This is the most basic of all classification methods.  In
essence, a test song’s features are tested against every
possible model.  The model that most probabilistically
matches the test song is returned as the match.  This
method lacks any sub-classifications such as genre,
artist, or album.  The way that these would be classified
is by simply reading information about the matched song
as stored in the filename or in the metainformation stored
within the MP3 file itself.  This approach is the linear
search, which we earlier indicated was infeasible.  We
thus provided this for baseline performance comparisons.

5.2. Decision Trees

Decision trees are a general structure of grouping items
into a tree-like structure, and then following the branches
of the trees based on a rule determined for each node as
the tree was built.  The type of items in the leaves and
the decisions to get there can be anything.  For this
system, we show two approaches.

5.3. Decision Tree – Top Down

Using a weighted sum vector, we built a decision trees
for artist and genre using the ID3 algorithm developed
by Quinlan [9] as described in Mitchell [10] for
continuous-valued attributes.  The weighted vectors were
computed by sorting GMMs’ mixtures (mean and
variance vectors) by the weight of that mixture to
normalize vector element order between GMMs.  We
then multiplied the weight by each vector element and
summed each mean vector and each variance vector,
concatenating the two sum vectors to produce a final 40-
dimensional weighted vector.  The class of each GMM
was computed by hand at the artist level.  (I.e. we
grouped all songs by a given artist into the same genre.)
The tree learning did not prune used attributes, since they
are not binary and multiple splits can be obtained using
different ranges of values for the same attribute.

5.4. Decision Tree – Bottom Up

In this method, the “natural” tree structure that can be
associated with how MP3s are arranged on a system is
used as the tree.  Typically, MP3s are stored in a user’s
music directory.  Within the music directory, directories
for each genre exist.  Each genre directory contains
directories for all artists of that genre.  This structure
continues for both albums of an artist and songs of an
album.  Our implementation of this method calculates a
combined model for each album based on the songs in
the given album’s directory.  A model is calculated for
an artist by combining the models for the artist’s albums.
This is continued for artist and genre.  The GMMs are
combined by computing their average mean and variance
vectors.  Higher-level combined models are based on the
GMMs one level deeper, rather than the individual song
GMMs.

To traverse the tree, the test song’s likelihood is
computed for each of the genre models.  The most
probable model directory is entered and the process
repeats for artists.  This is continued until we reach a
song.  This is the strict version of this method.

As a loose variant, not only is the most likely
genre/artist/album/song checked against the test song,
but the next 4 likely models are checked as well.  Doing
this creates a larger search space, but accounts for
possible faulty models.

5.5. Clustering

Using weighted sum vectors computed as described in
section 5.2, we organized GMMs into clusters,
considering each cluster a class.  We applied two
variations on this approach, one based on human-labeled
data and one that used an unsupervised learning
technique.

To classify a GMM in our clustering schemes, the
program computed an ordered list of the nearest (in
Euclidean distance) cluster means.  The program then
determines, for each of the j clusters with closest means
to the GMM, the k nearest vectors as a “possible match”



list.  In an application setting, the models in the possible
match list would be used to determine the likelihoods of
the features for the presented audio file to attempt
identification. We did not take this final step, however,
since we tested the system’s ability to classify models of
audio that hadn’t been included in the training set.  This
multi-level “nearest point” scheme could be improved by
dividing large clusters into smaller clusters to reduce the
amount of points that must be examined to construct the
possible match list.

We ran both supervised (human-labeled) and
unsupervised (machine-labeled) tests of clustering.  In
the supervised case, we calculated the mean vector for
each class (artist or genre), allowing an example to reside
in multiple cases in the genre case.  In the unsupervised
case, we used the (“hard”) k-means algorithm as
described in [10].  The program first randomly assigned
each GMM to one of j clusters, not allowing multiple-
membership in clusters.  The program then iteratively
recalculated the mean of each cluster and the
classification of each example, based on the new closest
mean, stopping once the system was stable.

6. RESULTS

Initial results for all method indicate that the test
machine used is not nearly optimal for an initial coding
of this system.  Since speed and time are such an
important issue, it can be seen that narrowing down the
test set in some fashion is needed for the system to be at
all usable.

For the following results, we used the classification
methods with approximately 1500 songs.  Due to time
constraints, some of the results come from what we view
as a legitimate subset of test data.

6.1. Brute Force

Since this method checks a song against each model, it is
incredibly accurate.  However, since this method checks
a song against each model, it is incredibly slow.
Running the classifier on all data resulted in a
classification rate of 99%.  This is above our initial
projected requirement.  However, the time to compute
this result was 3 days on a very fast machine.

In order to limit the time it takes to run a test, a limited
subset of a test song’s features were used.  Testing the
first N feature vectors against all model resulted in the
following classification rates:

n % correct
100 31.8
300 64.8
500 76.6
1000 89.7
3000 96.2

It is interesting to see that using only the first 30 seconds
of audio results in a classification rate not far from that

of using an entire song’s features.  This happens because
most songs in general have an internal structure that
includes repetition of common themes.  It only takes one
pass of these themes to get an accurate classification.
The songs that this method does not hold true for are
those with extended intro segments or more advanced
musical ideas.  Although this is a problem, it is only a
problem for a small subset of songs.  For this reason, it is
advisable to only test on the small subset of features to
speed up classification.  Only testing the beginning of the
file would be problematic if tested songs had silence or
noise inserted at the beginning.  This could be a problem,
for instance, in a system designed to detect unwanted
songs on a file-sharing network.

6.2. Decision Tree – Top Down

Using the ID3 algorithm we built a decision tree for artist
and one for genre, both based on human-supplied class
labels.  The tree was built using our 1505-model corpus,
holding out 151 as a test set.  The test set was evenly
distributed across artists.  Each leaf of the decision tree
was labeled with the majority class of examples used to
create it.  To test a song, we followed the path indicated
by the decision tree rules and compared the song’s class
to the class of the leaf it reached.  Our results are listed in
the table below.

Class Number
of Labels

Number
of Matches

Artist 78 47, 31.1%
Genre 15 75, 69.7%

6.3. Decision Tree – Bottom Up

Strict:
When using this model, a song is only ever tested against
models that are a subclass of previous best matches.
Because of this, the test is much faster than other
methods.  However, because of the strict model
following nature, the accuracy is not very good at all.
Testing done on a limited subset of the data results in
only a 5% classification rate.

Loose:
Being able to test against the “runners up” adds a great
deal of backup to the system.  Although the test set is
larger than the strict method, it is still far smaller than
that used in brute force.  Using the same limited subset
for testing, a classification rate of 60% has been
observed.

For both of the above methods, the main problem comes
in the decision-making part of the process.  The system
compares against conglomerate models when deciding
which paths to follow.  It is our belief that construction
of these models based on the genre/artist/album/song
hierarchy is not a feasible approach.  Many artists do not
stick to any one genre.  This follows to their albums and
songs respectively.  Also, some artists can easily fit into
more than one genre (e.g. rap metal, Celtic punk, and
alternative rock).  It is believed that if the base models



were more solidly constructed, this would be a valid
approach.  We discuss automated solutions similar to this
below.

6.4. Clustering

To test our clustering classification system, we used our
1505-model corpus, holding out 151 (evenly distributed
alphabetically by artist name) as a test set.  We compared
each test model with the 5 closest models in the 2
clusters with mean closest to the model.  We calculated
the number of test examples that matched the human-
determined class (artist or genre) of at least one model
from the possible match list.  In the unsupervised case,
we also calculated the percentage of possible matches
that shared a class with the test examples.  These results
are shown in the table below.  These results show that
unsupervised clustering outperformed supervised
clustering for both artist and genre classification.

Class Type Clus
ters

Matches Avg.
Match
Rate

Artist Unsupervised 100 112,
74.2%

22.3%

Artist Supervised 78 48,
31.8%

Artist Supervised –
Full Vectors

78 49,
32.5%

Genre Unsupervised 30 137,
90.7%

45.8%

Genre Supervised 15 95,
62.9%

Genre Supervised –
Full Vectors

15 90,
59.6%

For these experiments, a song that shared a class with
any of the 10 models on its “possible match” list was
considered a match.  The Average Match Rate column
indicates for the unsupervised tests what the average
percentage of matches among the “possible match” list
was.  The number of clusters for the unsupervised cases
was chosen somewhat arbitrarily, with the intention of
allowing the system a little freedom to split broad classes
into more similar parts.  This ability is likely why the
unsupervised clustering proved more successful – many
artists produce songs which sound fairly different, so a
song may not be close to its artist’s mean vector even
though it lies within the convex hull of examples of that
artist’s work.  This characterization is especially true of
genres, where human classifications such as “rock” can
encompass a wide variety of soundscapes.

The fact that using all 640 elements of the GMM vector
offered no performance gain is encouraging, since using
full vectors requires a significant performance reduction.
Unsupervised clustering tests (which require several
iterations to establish the clusters) did not complete after
several hours, and were terminated so that computer time
could be used on more feasible tests.

Unsupervised clusters also significantly outperform
decision tree classification (discussed in section 6.2),
while supervised clusters and decision trees show
roughly equal performance.

7. FUTURE WORK

7.1. Objectives Not Accomplished

In the initial discussion of this project, we proposed to
give the user database modification and maintenance
options.  Due to time constraints, our database does not
have as many examples as we had hoped and we did not
have time to develop easy-to-use tools to maintain it.

We also only have a very limited song recommendation
feature built in to the classifiers.  Most of the nearness
calculations are already in place, so this could be easily
built in.

7.2. To Make the System Better

Some of the first improvements that could be made to
this system are to use approximation methods to speed
up the training and testing of models.  Tricks like this
can be applied throughout the system to speed up code
by a large factor.  One such method is to reduce the
number of samples whose features are examined.  We
found that for files of a few minutes of audio, model
building took

For bottom-up decision trees, we need to identify the
best way to construct models that are representative of a
collection of other models.  This problem may be easily
solvable if training speed can be enhanced.  One
approach would be to build the hierarchy based on the
unsupervised clustering method rather than hand-labeled
collections.

It is very important to continue experimentation with
clustering algorithms.  Limiting the test set is the prime
way to enhance and scale system performance.
Clustering also gives a very easy way to recommend
songs to the listener and to cluster genres, artists, and
possibly albums.  Further experiments should include
other clustering methods and varied numbers of clusters,
perhaps even allowing for an adaptive number of
clusters.

This system currently has no good user interface other
than terse usage messages for a large collection of
scripts, subscripts, and executable programs.  Creating a
user interface for this application would make the system
usable by people other than the designers.  With a
programmer’s interface, the system could be
incorporated into existing systems; for instance it could
allow an MP3 player to check a database to determine if
it has accurate metadata about songs.

7.3. Interesting Ideas

One of the most interesting aspects of this system that
needs further investigation is to identify which of the



MFCC features actually apply towards music.  In
addition, how can we use the features to gain even more
knowledge about a piece of music?  Determining this
would help greatly in all areas of clustering and
combinational model building.

This system can be expanded and used in any number of
applications.  One use is in a file sharing system to block
unauthorized song uploading.  A radio could be fitted
with access to this system so that the user could
determine what song was playing without waiting for a
DJ announcement.  The system could be used to
recommend new songs to a user based on expressed
preferences or it could make music selections based on
the songs a user has recently played, hopefully matching
the mood the user is in.  The possible uses are varied and
socially very interesting.
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